Closing the Gap in Education and Technology

DAVID DE FERRANTI
GUILLERMO E. PERRY
INDERMIT GILL
J. LUIS GUASCH
WILLIAM F. MALONEY
CAROLINA SÁNCHEZ-PÁRAMO
NORBERT SCHADY
CLOSING THE GAP
IN EDUCATION
AND TECHNOLOGY

by
David de Ferranti
Guillermo E. Perry
Indermit Gill
J. Luis Guasch
William F. Maloney
Carolina Sánchez-Páramo
Norbert Schady

THE WORLD BANK
Washington, D.C.
The findings, interpretations, and conclusions expressed herein are those of the author(s) and do not necessarily reflect the views of the Board of Executive Directors of the World Bank or the governments they represent.

The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries.

Rights and Permissions
The material in this work is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The World Bank encourages dissemination of its work and will normally grant permission promptly.

For permission to photocopy or reprint any part of this work, please send a request with complete information to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA, telephone 978-750-8400, fax 978-750-4470, www.copyright.com.

All other queries on rights and licenses, including subsidiary rights, should be addressed to the Office of the Publisher, World Bank, 1818 H Street NW, Washington, DC 20433, USA, fax 202-522-2422, e-mail pubrights@worldbank.org.

About This Book
David de Ferranti is vice president and Guillermo E. Perry is chief economist in the World Bank’s Latin American and Caribbean Regional Office. J. Luis Guasch is a regional adviser on regulation and competition, and William F. Maloney and Carolina Sánchez-Páramo are economists in the Latin American and Caribbean Regional Office. Indermit Gill is an economic adviser in the Bank’s Poverty Reduction and Economic Management Department, and Norbert Schady is a senior economist in the Bank’s Vice Presidency for Development Economics.

For more information on publications from the World Bank’s Latin America and Caribbean Regional Office, please visit us at www.worldbank.org/lacpublications (o en Español: www.bancomundial.org/publicaciones).

Cover design by Jeffrey Kibbler, The Magazine Group.

The World Bank Art Program makes particular efforts to identify artists from developing nations and make their work available to a wider audience. The art program organizes exhibits, education and cultural partnerships, competitions, artists’ projects, and site-specific installations.

Library of Congress Cataloging-in-Publication Data
Closing the gap in education and technology / David de Ferranti … [et al.] with William F. Maloney, Carolina Sanchez-Paramo.
p. cm. — (World Bank Latin American and Caribbean studies)
Includes bibliographical references.
1. Education—Economic aspects—Latin America. 2. Education—Effect of technological innovations on—Latin America.
I. De Ferranti, David M. II. Series.
LC67.L3 C56 2003
338.4'7378'098—dc21 2002034304
Contents

Acknowledgments ... ix

Abbreviations .. xi

Chapter 1: Introduction and Summary: Skills Upgrading and Innovation Policies ... 1
 Productivity, Educational, and Technology Gaps in Latin America and the Caribbean ... 2
 From Financing Gaps to Productivity Gaps: Closing the Gap in Education and Technology in a Synchronized Way 7
 Students, Workers, and Firms: The Major Actors of Educational and Technological Progress 9
 The Role of Government Policy .. 10
 The Critical Importance of Effective Innovation Networks ... 10
 Closing the Skill Gaps .. 12
 Closing the Technology and Productivity Gaps ... 15
 Summing Up ... 20
 Endnotes .. 21

Chapter 2: The Gaps That Matter Most .. 23
 The Productivity Gap .. 23
 The Skill Gap ... 24
 The Technology Gap .. 32
 Conclusion: Benchmarking Latin American Performance ... 40
 Endnotes .. 46

Chapter 3: How Technology and Skills Interact: The Evidence for Latin America and the Caribbean 49
 The Rising Demand for Skilled Workers in Latin America ... 49
 Skill-Biased Technological Change in Latin America ... 55
 The Relationship between Technology Transfer, the Rising Demand for Skills in Latin America, and Patterns of Integration into the Global Economy ... 63
 The Level of Skill in a Country Is an Important Determinant of Technology Transferred from Abroad 67
 Long-Term Cycles in the Demand for Skilled Workers and Technology? .. 70
 Conclusion .. 72
 Endnotes .. 72

Chapter 4: Closing the Skills Gap: Education Policies ... 75
 Educational Transitions: The How .. 76
 Educational Transitions: The (Uncertain) Why 80
 Educational Transitions: Policy Implications 86
 Understanding the Education Market: Secondary School ... 86
 Understanding the Education Market: Universities 95
 Conclusion: Priorities for Education Upgrading in Latin America ... 104
 Endnotes .. 106

Chapter 5: Closing the Skills Gap: Training Policies ... 109
 Vocational Education and Training Systems in Latin America ... 110
 How Employers View Training ... 117
 Correlates of In-Service Training: Evidence from Mexico ... 120

Endnotes .. 120
Box 5.9 Recent Changes in Training Systems in Latin America and the Caribbean ... 131
Box 6.1 The Dual Role of R&D: Innovation and Learning ... 140
Box 6.2 Supply-Side and Demand-Side Measures to Improve Technology Diffusion ... 141
Box 6.3 Singapore’s Reliance on FDI .. 147
Box 6.4 The Role of Intellectual Property Rights (IPRs) in Technology Transfer .. 153
Box 6.5 Managing Intellectual Property Rights (IPRs) ... 156
Box 6.6 TRIPS: Developing Countries’ Concerns Regarding the Universalization of IPRs ... 157
Box 6.7 Human Capital, IPRs, and R&D Policies as Determinants of Private R&D and Their Impact on TFP—Methodology and Results ... 160
Box 6.8 The Contrasting Approaches to R&D by Korea and Mexico .. 167
Box 7.1 Venture Human Capital in the United States and Israel .. 172
Box 7.2 Jump-starting a National Innovation Effort: The NIS in Israel and Finland 179
Box 7.3 Build a Better Mouse and the World Will Beat a Path to Your Door (or Is Playing God a Low-Tech Activity?) .. 180
Box 7.4 What Is a College Education For? .. 183
Box 7.5 Did the Bayh-Dole Act Increase the Commercialization of Publicly Funded Research? 186
Box 7.6 The Cluster Approach of Finnish R&D Policy ... 190
Box 7.7 Research Consortia in Japan: Did They Work? ... 191
Box 7.8 The Israel Magnet Program ... 193
Box 7.9 Migration as a Vector of Innovation .. 194
Box 7.10 Return Migration in Israel and Ireland .. 196
Box 7.11 Deficient Brain Drain in Brazil ... 198
Box 7.12 Catalyzing an Innovation Cluster: The Millennium Science Initiative in Chile 199
Box 7.13 The Perils of Intellectual Autarky: the Rewards of Trade .. 200

Tables
Table 1.1 The Gaps That Matter Most .. 6
Table 1.2 First Stage .. 16
Table 1.3 Second Stage ... 17
Table 1.4 Third Stage ... 19
Table 2.1 TFP Growth Rates in Latin America Were Negative in the 1980s and Low in the 1990s 25
Table 2.2 In the 1980s and 1990s, Growth Rates of TFP Were High in Chile and Low in Most Other Latin American Countries ... 26
Table 2.3 Compared to East Asia and the Natural Resource–Abundant Countries, Latin America Has Low Levels and an Unequal Distribution of Educational Attainment among the Adult Population 28
Table 2.4 Many Countries in Latin America Have Massive Secondary Enrollment Deficits, and Some Have Smaller Tertiary Enrollment Deficits ... 30
Table 2.5 Countries in Latin America Have Low Import Penetration, Low Penetration of Capital Goods, and Low Levels of Royalty Payments .. 36
Table 2.6 Latin American Workers Have Small Amounts of R&D Expenditures ... 40
Table 2.7 Residents of Most Latin American Countries Have Low Rates of Patent Registration in Their Own Countries as well as in the United States ... 42
Table 2.8 The Gaps That Matter Most .. 45
Table 3.1 The Bulk of Changes in the Wage Bill for Tertiary Workers and Secondary Workers Occurred within Industries .. 60
Table 3.2 By and Large, Skill Upgrading at the Tertiary Level Occurred in the Same Sectors in Chile in the 1980s and in Other Latin American Countries in the 1990s .. 61
Table 3.3 In Chile Firms That Were Exposed to New Technology from Abroad Also Upgraded Skills 62
Table 3.4 There Is More Skill Upgrading, Measured by the Relative Wages, Relative Employment Shares, and Relative Demand for Tertiary Workers, in Countries and Industries That Have Higher Import Penetration, Especially of Imports That Are Intensive in R&D .. 67
Table 3.5 Countries in Latin America with More Skilled Workers Are Better Prepared to Adopt New Technologies ... 68
Table 3.6 Wage Inequality Increased with Increases in Demand for Skilled Workers ... 71
Table 4.1 From Pyramid to Diamond in East Asia and Scandinavia .. 80
Table 4.2 From Pyramid toward Diamond in Some Latin American Countries ... 81
Table 4.3 From Pyramid to Anvil in Other Latin American Countries 84
Table 4.4 Education Spending as a Fraction of GDP Is Not Low in Most Latin American Countries 84
Table 4.5 The Opportunity Cost of Attending Secondary School Appears to Be High in Most Latin American Countries 88
Table 4.6 High Rates of Return to Tertiary Education, and Modest Rates to Secondary School in Most of Latin America 88
Table 4.7 There Is Generally Little Variation in Primary School Student Performance on Test Scores within Latin America, with the Exception of Cuba 89
Table 4.8 Tertiary Enrollments Have Been Growing since the 1970s... 95
Table 4.9 ... and Have Continued to Grow in the 1990s 95
Table 5.1 A Typology of Training Systems 112
Table 5.2 Differences between Lifelong Learning and Traditional Education 115
Table 5.3 Estimated Productivity Effects of Formal Training 121
Table 5.4 Rationale and Policy Options for Public Intervention in Training 126
Table 5.5 Impact of Trade on LAC Countries and Education Effect 142
Table 5.6 Impact through Trade of a 10 Percent Increase in Education on TFP Growth Rate, 1998 142
Table 5.7 Effects on Foreign Direct Investment 143
Table 5.8 Determinants of Private R&D Per Worker in LAC and Other Countries: Elasticities 144
Table 5.9 Non-Tariff Barriers Levels for LAC and East Asian Countries 145
Table 5.10 Intellectual Property Rights Index, 1995 162
Table 5.11 Intellectual Property Rights Index, 1995 162
Table 5.12 Index of Foreign Investment Barriers, 2000 146
Table 5.13 Fiscal Incentives Regimes for R&D as of 2000 146
Table 5.14 R&D Expenditure by Activity (in percentages) 164
Table 5.15 Patterns of R&D Expenditures: LAC versus OECD and East Asian Tigers, Averages for 2000 165
Table 5.16 Education Spending as a Fraction of GDP, 1960–99 156
Table 5.17 Transitions of Strength of Patent Protection—IPR—for Selected Countries, 1960–2000 154
Table 5.18 Evolution of Total R&D Expenditures as a Percentage of GDP, 1960–99 152
Table 5.19 Potential Benchmarks for the LAC NIS: A Wish List 174
Table 5.20 Determinants of Patenting in the United States 181
Table 5.21 Tentative Benchmarks of Interaction of Higher Education (HE) and Public Laboratories (PL) with Firms 185
Table 5.22 Guidelines for Sharing Royalties from IPRs 187
Table 5.23 Policies for Improving Academic/Private Sector Collaboration 187
Table 5.24 Social Rates of Return to R&D 201

Figures
Figure 1.1 The Knowledge Economy Simplified 3
Figure 1.2 The Latin America and the Caribbean Region’s Deficits in Technology and Education Relative to East Asia (1980–99) 5
Figure 1.3 A Problem in Many LAC Countries: Massive Deficits on Secondary Education 6
Figure 1.4 A Simple National Innovation System (NIS) 11
Figure 1.5 Educational Transitions 13
Figure 1.6 Superstars in R&D 18
Figure 1.7 Returns to R&D and Physical Capital 18
Figure 1.8 Most Latin American Countries Have Low Levels of Educational Attainment of Their Adult Population 27
Figure 2.1 Most Latin American Countries Have Low Levels of Educational Attainment of Their Adult Population 27
Figure 2.2 Many Countries in Latin America Have Massive Deficits in Secondary Enrollment 29
Figure 2.3 Some Countries Also Have Large Deficits in Tertiary Enrollment, although These Are Generally Smaller 31
Figure 2.4 Colombian and Chilean Secondary School Students Perform Badly on International Tests 32
Figure 2.5 Chilean Adults Also Do Badly on International Tests of Literacy 33
Figure 2.6 Some Latin American Countries Appear to Have Low Numbers of Scientists and Engineers for Their Income Levels, but Others Do Not 34
Figure 2.7 Most Countries in the Region Do Not Appear to Have an Important Deficit in the Fraction of University Students Enrolled in Science and Engineering 35
Figure 2.8 In the 1980s East Asia Opened Up a Big Lead over Latin America in the Degree of Computer Penetration .. 37
Figure 2.9 The Digital Divide between East Asia and Latin America Did Not Shrink in the 1990s 38
Figure 2.10 Latin America Also Lags behind East Asia in Other Measures of ICT Infrastructure 39
Figure 2.11 Latin American Countries Also Have Low Levels of R&D Per Worker 41
Figure 2.12 The Rates of Patent Registration by Latin American Inventors Are Low for Their Levels of Per Capita Income ... 43
Figure 2.13 The Widening of the LAC Technology Gap: Regional Comparisons of Index Scores 44
Figure 2.14 Between 1960 and 2000, the East Asian Tigers Turned a Deficit in the Mean Years of Schooling into a Surplus, while the Deficit in Latin America Did Not Change ... 45
Figure 2.15 Between the 1960s and the 1990s, the East Asian Tigers Turned a Deficit in the Mean Number of Patents Per Worker Registered in the United States into a Surplus, while the Deficit in Latin America Did Not Change .. 46
Figure 3.1 The Relative Wages and Relative Supply of Workers with Tertiary Education Increased Substantially in Most Latin American Countries ... 51
Figure 3.2 The Relative Supply of Workers with Secondary Education Increased Substantially in Latin America 54
Figure 3.3 The Demand for Tertiary Workers Increased in Every Country except Brazil 57
Figure 3.4 The Demand for Secondary Workers Increased in Every Country except Argentina and Brazil 58
Figure 3.5 Tariffs Decreased and Import Penetration Increased in a Number of Latin American Countries in the 1980s and 1990s ... 64
Figure 3.6 FDI Flows Increased Significantly in a Number of Latin American Countries 65
Figure 3.7 The Long-Term Cycles in Relative Demand in Latin America .. 70
Figure 4.1 Education Transitions .. 77
Figure 4.2 The Distribution of Educational Attainment Was Similar in Brazil, Spain, and Korea in 1960 78
Figure 4.3 Fast, Balanced Transitions in the East Asian Tigers and Finland .. 79
Figure 4.4 Balanced but Slow Transitions in Some Latin American Countries 82
Figure 4.5 Unbalanced and Slow Transitions in Other Latin American Countries 83
Figure 4.6 There Is No Clear Relationship between Changes in Education Expenditure and Changes in Attainment in Latin America ... 85
Figure 4.7 There Is No Clear Relationship between Education Quality and Quantity in Latin America 90
Figure 4.8 Patterns of Educational Attainment in Guatemala, Nicaragua, and Peru 92
Figure 4.9 Supply and Demand Factors in the Evolution of Educational Attainment in Colombia, 1990–2000 .. 93
Figure 4.10 The Rising Share of the Private Sector in the University Market 96
Figure 4.11 Private Tertiary Education Is More Expensive to Households ... 97
Figure 4.12 Conditional on Enrollment, Students from Poorer Households Are Less Likely to Attend Private Universities ... 98
Figure 4.13 The Wages of Workers with “Scientific” Degrees Relative to Those with “Humanistic” Degrees in Mexico Have Not Changed in the 1990s 101
Figure 4.14 Cost Recovery in Public Universities Is Low in Many Latin American Countries 102
Figure 5.1 Education and Training Systems around the World .. 111
Figure 5.2 Wage Profiles in Brazil, Colombia, and Mexico—Early and Late 1990s 116
Figure 5.3 The Supply of Skilled Labor Is a Leading Constraint to Productivity in Latin America and the Caribbean ... 118
Figure 5.4 Use of Mature Technologies and Availability of Skilled Workers Are the Main Reasons Why Firms in Latin America Do Not Invest in Formal Training 119
Figure 5.5 Knowledge of Training Providers and Resource Considerations Are More Important Constraints for Micro-Enterprises, Guatemala 2000 ... 120
Figure 5.6 Almost 50 Percent of Training in Latin America Is Internal to Enterprises, and Another 40 Percent is Privately Supplied ... 120
Figure 5.7 In Mexico, Educated Workers Get Trained More Often .. 122
Figure 5.8 … and More Innovative Firms Train Their Workers More .. 123
Figure 5.9 In Mexico, Two-Thirds of Training Is Internal ... 123
Figure 5.10 … and About Half of the Rest Is by Private Providers ... 124
Figure 5.11 In Mexico, Training Increases with Greater Openness, but Only if Firms Conduct R&D 125
Figure 5.12 Training, Especially if It Is More Continuous, Facilitates TFP Increases 125
Figure 6.1 R&D Effort, Licensing, and Development: Predictions from Median Regressions 136
Figure 6.2 Innovation and Development .. 136
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Mean Tariff Barriers (percent), 1990 and 1999</td>
<td>144</td>
</tr>
<tr>
<td>6.4</td>
<td>Foreign Direct Investment, 1989 and 1999</td>
<td>146</td>
</tr>
<tr>
<td>6.5</td>
<td>High-Achieving LAC Countries</td>
<td>149</td>
</tr>
<tr>
<td>6.6</td>
<td>Low-Achieving LAC Countries</td>
<td>150</td>
</tr>
<tr>
<td>6.7</td>
<td>Evolution of R&D/GDP Expenditures on GDP Per Capita 1980–1995</td>
<td>152</td>
</tr>
<tr>
<td>6.8</td>
<td>Patent Rights and Privately Financed R&D (1980–95 average for 58 countries)</td>
<td>161</td>
</tr>
<tr>
<td>6.9</td>
<td>Researchers, 1999</td>
<td>163</td>
</tr>
<tr>
<td>6.10</td>
<td>Financing of R&D Expenditures, 1999</td>
<td>165</td>
</tr>
<tr>
<td>6.11</td>
<td>Gross R&D Expenses by Executing Sector, 1994–98</td>
<td>165</td>
</tr>
<tr>
<td>6.12</td>
<td>Private R&D Performance and Experimental Development</td>
<td>166</td>
</tr>
<tr>
<td>7.1</td>
<td>A Simple NIS</td>
<td>170</td>
</tr>
<tr>
<td>7.2A–F</td>
<td>Patenting, Licenses, and Royalties and R&D Benchmarking</td>
<td>176</td>
</tr>
<tr>
<td>7.3</td>
<td>R&D Expenditure and R&D Financed by the Productive Sector: Taiwan (China), Korea, Finland, and Israel</td>
<td>177</td>
</tr>
<tr>
<td>7.4</td>
<td>Predicted and Observed R&D/GDP</td>
<td>177</td>
</tr>
<tr>
<td>7.5</td>
<td>Returns to R&D and Physical Capital</td>
<td>178</td>
</tr>
<tr>
<td>7.6</td>
<td>Inefficiency of LAC Countries in Patenting in the United States</td>
<td>181</td>
</tr>
<tr>
<td>7.7</td>
<td>Allocation of R&D Resources</td>
<td>183</td>
</tr>
<tr>
<td>7.8</td>
<td>Quality of Scientific Research Institutions and University Industry Research Collaboration</td>
<td>184</td>
</tr>
<tr>
<td>7.9</td>
<td>Brazil and Mexico: IRCA in Aircraft and Computing Equipment</td>
<td>189</td>
</tr>
<tr>
<td>7.10</td>
<td>Student Migration Rate: 1993–98</td>
<td>195</td>
</tr>
<tr>
<td>7.11</td>
<td>Brain Circulation: Migration/Population with Tertiary Education</td>
<td>197</td>
</tr>
</tbody>
</table>