Behavioral economics and psychology of incentives

Emir Kamenica
University of Chicago Booth School of Business
Plan for talk

- Overview
- Review of empirical evidence
- Mechanisms
- Interventions in developing countries
Behavior change

- Standard decision making problem:

\[\max_a E_{\mu} [u (a, \omega)] \]
Behavior change

- Standard decision making problem:
 \[\max_a E_\mu [u(a, \omega)] \]

- Change the marginal utility
 - incentives
Standard decision making problem:

$$\max_a E_\mu [u(a, \omega)]$$

- Change the marginal utility
 - incentives
- Change the belief
 - persuasion
Standard theory of incentives

- Beliefs (implicitly) taken as given
 - no scope for persuasion
Standard theory of incentives

- Beliefs (implicitly) taken as given
 - no scope for persuasion
- Increase marginal utility of \(a \leftrightarrow \text{pay for } a \)
 - if you want to induce behavior, pay for it
Empirical evidence

- Two types of anomalies
Empirical evidence

- Two types of anomalies

- Standard incentives backfire
 - paying for intrinsically enjoyable tasks
 - paying for prosocial tasks
 - paying too little
 - paying too much
 - giving too many options
Empirical evidence

- Two types of anomalies
 - Standard incentives backfire
 - paying for intrinsically enjoyable tasks
 - paying for prosocial tasks
 - paying too little
 - paying too much
 - giving too many options
 - Non-standard “incentives” work
 - frames
 - defaults
 - primes
 - implementation intentions
 - nudges
 - choice architecture
Mechanisms

- Standard incentives typically work very well
Mechanisms

- Standard incentives typically work very well
 - laundry list of exceptions not useful
Mechanisms

- Standard incentives typically work very well
 - laundry list of exceptions not useful

- Mechanisms

\[
\text{output} = f(\text{effort}; X)
\]

\[
\max_a E \mu [u(a, \omega)]
\]
Mechanisms

- Standard incentives typically work very well
 - laundry list of exceptions not useful

Mechanisms

- contextual inference
- loss aversion and dynamic inconsistency
- output = f (effort; X)
Mechanisms

- Standard incentives typically work very well
 - laundry list of exceptions not useful

- Mechanisms
 - contextual inference
 - loss aversion and dynamic inconsistency
 - output = f (effort; X)

\[\max_a E_\mu [u(a, \omega)] \]
Empirical evidence
Failure of standard interventions

- Extrinsic incentives crowd out intrinsic incentives (Deci 1971)
 - temporary payment reduces subsequent engagement

- Paying for prosocial behavior (Titmuss 1970; Lacetera et al. 2012)

- Paying too much (Ariely et al. 2009; Beilock 2010)

- Paying too little (Gneezy & Rustichini 2000a; 2000b)

- Providing too many options (Iyengar et al. 2004)
Failure of standard interventions

- Extrinsic incentives crowd out intrinsic incentives (Deci 1971)
 - temporary payment reduces subsequent engagement
- Paying for prosocial behavior (Titmuss 1970; Lacetera et al. 2012)
- Paying too much (Ariely et al. 2009; Beilock 2010)
- Paying too little (Gneezy & Rustichini 2000a; 2000b)
- Providing too many options (Iyengar et al. 2004)
Failure of standard interventions

- Extrinsic incentives crowd out intrinsic incentives (Deci 1971)
 - temporary payment reduces subsequent engagement
- Paying for prosocial behavior (Titmuss 1970; Lacetera et al. 2012)
- Paying too much (Ariely et al. 2009; Beilock 2010)
Failure of standard interventions

- Extrinsic incentives crowd out intrinsic incentives (Deci 1971)
 - temporary payment reduces subsequent engagement
- Paying for prosocial behavior (Titmuss 1970; Lacetera et al. 2012)
- Paying too much (Ariely et al. 2009; Beilock 2010)
- Paying too little (Gneezy & Rustichini 2000a; 2000b)
Failure of standard interventions

- Extrinsic incentives crowd out intrinsic incentives (Deci 1971)
 - temporary payment reduces subsequent engagement
- Paying for prosocial behavior (Titmuss 1970; Lacetera et al. 2012)
- Paying too much (Ariely et al. 2009; Beilock 2010)
- Paying too little (Gneezy & Rustichini 2000a; 2000b)
- Providing too many options (Iyengar et al. 2004)
Success of non-standard interventions

- Framing (Wansink 2006)
Success of non-standard interventions

- Framing (Wansink 2006)
- Defaults (Madrian & Shea 2001)
Success of non-standard interventions

- Framing (Wansink 2006)
- Defaults (Madrian & Shea 2001)
- Priming (Vohs et al. 2006; Berger et al. 2008)
Success of non-standard interventions

- Framing (Wansink 2006)
- Defaults (Madrian & Shea 2001)
- Priming (Vohs et al. 2006; Berger et al. 2008)
- Cognitive dissonance (Festinger 1957)
Success of non-standard interventions

- Framing (Wansink 2006)
- Defaults (Madrian & Shea 2001)
- Priming (Vohs et al. 2006; Berger et al. 2008)
- Cognitive dissonance (Festinger 1957)
- Choice architecture (Sunstein & Thaler 2008)
Mechanisms
Mechanisms

- Beliefs
- Preferences
- Technology
Beliefs

- **Contextual inference**

\[\max_a E_\mu [u(a, \omega)] \]
Beliefs

- Contextual inference

\[\max_a E_\mu [u(a, \omega)] \]

- Incentives, frames, defaults, choice sets etc. affect
 - what I think about how much I will like the task (Benabou & Tirole 2003)
 - what others will think about why I am doing the task (Benabou & Tirole 2006; Ariely et al. 2009)
 - how much I know about which option is best for me (Kamenica 2008)
 - what I think I might have forgotten (Baliga & Ely 2011)
 - etc.
Preferences

- Loss aversion and dynamic inconsistency

\[\max_a E_\mu [u(a, \omega)] \]
Preferences

- Loss aversion and dynamic inconsistency

\[\max_a E_\mu [u(a, \omega)] \]

- Defaults can affect \(\mu \), but also \(u(\cdot) \)
 - loss aversion
Preferences

- Loss aversion and dynamic inconsistency
 \[\max_a E_\mu [u(a, \omega)] \]

- Defaults can affect \(\mu \), but also \(u(\cdot) \)
 - loss aversion

- A large choice set can affect \(\mu \) but also \(\max/u(\cdot) \)
 - dynamic consistency
Technology

- Helping people do what they want to do vs.
- Getting them to do what they don’t
Technology

- Helping people do what they want to do
- vs.
- Getting them to do what they don’t

\[\max_a E_\mu [u(a, \omega)] \]
Technology

- Helping people do what they want to do

 vs.

- Getting them to do what they don’t

\[\max_a E_\mu [u(a, \omega)] \]

- Don’t door the bicyclist
Technology

- Helping people do what they want to do
 vs.
- Getting them to do what they don’t

$$\max_a E_\mu [u(a, \omega)]$$

- Don’t door the bicyclist
- Independence of the incentive scheme and the production function
Impact evaluation
Predicting impact

- Why intervene?
 - externalities
 - bounded rationality
Predicting impact

- Why intervene?
 - externalities
 - bounded rationality

- Getting vs. helping distinction
Predicting impact

- Why intervene?
 - externalities
 - bounded rationality

- Getting vs. helping distinction

- E.g., getting kids in school
Predicting impact

- Why intervene?
 - externalities
 - bounded rationality

- Getting vs. helping distinction

- E.g., getting kids in school
 - different routes grounded in different theories
 - generalizability